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Abstract
Undular bores describe the evolution and smoothing out of an initial step
in mean height and are frequently observed in both oceanographic and
meteorological applications. The undular bore solution for the higher-
order Korteweg–de Vries (KdV) equation is derived, using an asymptotic
transformation which relates the KdV equation and its higher-order counterpart.
The higher-order KdV equation considered includes all possible third-order
correction terms (where the KdV equation retains second-order terms). The
asymptotic transformation is then applied to the KdV undular bore solution to
obtain the higher-order undular bore. Examples of higher-order undular bores,
describing both surface and internal waves, are presented. Key properties,
such as the amplitude and speed of the lead soliton and the width of the bore,
are found. An excellent comparison is obtained between the analytical and
numerical solutions. Also, it is illustrated how an asymptotic transformation
and numerical solutions can be combined to generate hybrid asymptotic-
numerical solutions, thus avoiding the severe instabilities associated with
numerical schemes for the higher-order KdV equation.

PACS numbers: 05.45.Yv, 02.30.Jr

1. Introduction

Flow over topography is an important, widely occurring phenomenon in both oceanography
and meteorology. Oceanographic applications include the generation of highly nonlinear
internal waves on an evolving bore. For example, Holloway [1] describes the evolution of
internal bores on the Australian North-West Shelf and Cummins et al [2] describes observations
of the generation and propagation of internal waves in Knight Inlet, BC, Canada. A frequently
occurring meteorological application is the morning glory, a series of roll clouds formed by the
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flow of breezes over a mountain range. Christie [3] has detailed observations and descriptions
of the morning glory which forms over the Gulf of Carpentaria in Northern Australia.

The Korteweg–de Vries (KdV) equation arises as an approximate equation governing
weakly nonlinear long waves when second-order nonlinear and dispersive terms are retained;
see Whitham [4]. By retaining terms up to third order, the higher-order KdV equation

ηt + 6ηηx + η3x + αc1η
2ηx + αc2ηxηxx + αc3ηη3x + αc4η5x = 0, α � 1, (1)

results, where α is a non-dimensional measure of the (small) wave amplitude. This equation
describes the evolution of steeper waves of shorter wavelength than does the KdV equation.
Marchant and Smyth [5] derived the version of (1) appropriate for surface waves on shallow
water, in which case

c1 = −1, c2 = 23
6 , c3 = 5

3 , c4 = 19
60 . (2)

Whitham [4] developed modulation theory to study slowly varying wavetrains. In the
case of the KdV equation these modulation equations were found to form a system of three
first-order hyperbolic pdes for the properties of the modulated periodic cnoidal wave. A
particular solution of these modulation equations is a centred simple wave; see Gurevich and
Pitaevskii [6]. Physically the simple wave solution represents an undular bore which describes
the evolution of an initial step in mean height. It was found to be in good agreement with
numerical solutions of the KdV equation by Fornberg and Whitham [7].

The forced KdV equation has been widely used to describe the resonant flow of a stratified
fluid over topography. This resonant flow consists of upstream and downstream flows which
can be taken to be modulated unsteady wavetrains modelled using the KdV undular bore
solution; see Smyth [8]. In physical applications, however, higher-order effects have been
found to be important; see Melville and Helfrich [9] or Lamb and Yan [10].

Marchant and Smyth [5] used the asymptotic transformation

η = u +
αc1

12
(2u2 + uxx), α � 1, (3)

to transform (1) with only the higher-order nonlinear term c1 (with the other ci all zero) to the
KdV equation. This transformation was used to derive modulation equations for this special
case of (1). The higher-order undular bore solution was then used to model resonant flow over
topography more accurately. Marchant [11] considered a non-local asymptotic transformation
which allowed the higher-order KdV equation (1) to be transformed to the KdV equation.

The linearized dispersion relation for the higher-order KdV equation (1) is ω =
−k3 + αc4k

5. The linear wave speed is then not bounded for large wavenumber k. Hence
when (1) is solved numerically, high-frequency waves of small amplitude, generated by the
numerical discretization, are propagated at high speeds. This can cause numerical instabilities
to develop and limits the numerical methods available for solving (1) to the case when α is
small; see Marchant and Smyth [12] or Lamb and Yan [10].

In section 2 an alternate transformation to that of Marchant [11] is applied to reduce the
higher-order KdV equation (1) to the KdV equation, from which the undular bore solution
of the higher-order KdV equation is derived. In section 3 comparisons are made between
the analytical and analytical–numerical solutions for two examples of higher-order undular
bores. Hybrid analytical–numerical solutions of the higher-order KdV equation are developed
in order to avoid the instabilities that occur in the numerical solution of (1).

2. The higher-order undular bore

Marchant [11] used an asymptotic transformation to relate the higher-order KdV equation (1)
and the KdV equation and so obtained the two-soliton solution for the higher-order KdV
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equation (1). Here we use an alternate transformation to find a higher-order undular bore
solution. If we substitute

η = u + αc5u
2 + αc6uxx + αc7ux

∫ x

Ut

(u(p, t) − β) dp,

τ = t + α
c4

3
x, ξ = x + αc7β(x − Ut) + αc7Dt, α � 1, where

c5 = 1

6
(c3 − c1 + 4c4), c6 = 1

12
(c2 − 6c4 − c1), c7 = 1

3
(8c4 − c3),

D = Uu − 3u2 − uξξ

(4)

into the higher-order KdV equation (1), then u(ξ, τ ) is a solution of the KdV equation
uτ +6uuξ +u3ξ = 0 when terms of O(α2) are neglected. The transformation used by Marchant
[11] was suitable for transforming soliton solutions only. Here the transformation needed is
significantly different as it must be suitable for the transformation of the periodic cnoidal wave
solution. In the transformation β and U are the mean level and phase velocity of the KdV
cnoidal wave solution, respectively. It is also important that the transformation introduce no
secular terms. This requirement is the reason for β appearing in the integrand of the non-local
term in the transformation (with coefficient c7), as the mean level of u − β is zero. Also, the
constant D is associated with the first integral of the KdV equation.

KdV modulation theory is based on the periodic cnoidal wave solution

u = β +
2a

m
[1 − m − f (m) + mcn2(K(m)θ/π,m)],

where f (m) = E(m)

K(m)
, θ = kξ − ωτ, (5)

and k is the wavenumber, ω the frequency, U = ω/k the phase speed, β the mean height and
a the amplitude of the wavetrain. K(m) and E(m) are complete elliptic integrals of the first
and second kinds, while m is the modulus squared of the elliptic integrals. In the limit m → 1
(5) becomes the KdV soliton, while the limit m → 0 represents linear, sinusoidal waves of
small amplitude.

The simple wave solution of the KdV modulation equations was derived by Gurevich and
Pitaevskii [6] and corresponds physically to an undular bore which links the level A behind
the bore to the level B in front of the bore. It is

u = A − (A − B)m + 2(A − B)mcn2(Kθ/π,m),

a = 2(A − B)m, β = 2B − A + (A − B)(2f + m),

k = πK−1(A − B)
1
2 , U = 2A + 4B + 2(A − B)m,

p = A + (A − B)m, q = A − (A − B)m,

on
ξ

τ
= λ = U − 2(A − B)

m(1 − m)

f − (1 − m)
,

where 12B − 6A � ξ

τ
� 4A + 2B.

(6)

The periodic cnoidal wave (5) has constant amplitude, mean height, wavenumber and modulus
squared m. By contrast, (6) is a cnoidal wavetrain for which the properties are modulated, or
slowly varying. Within the bore the modulus squared m varies, from m = 1 at the leading
edge to m = 0 at the trailing edge. At the leading edge solitons of amplitude 2(A − B) on a
mean level of B occur, while at the trailing edge there are sinusoidal waves of small amplitude
on a mean height A. The width of the bore is 10(A − B)τ . Hence undular bores only occur
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if there is a step down in mean height, i.e. where A > B. The quantities p and q are the peak
and trough heights of the wave and represent the envelopes of the wavetrain.

Substituting the expression for β within (6) into the transformation (4) gives

β = 2B − A + (A − B)(2f + m) +
α

3
c5[(A − B)2(2 − 5m + 3m2

+ (4m − 2)f ) + 6B2 − 3A2 + (A2 − B2)(6f + 3m)]

+ α
4

3
c7(A − B)2[3(1 − f )2 − 2(1 − f )(1 + m) + m], (7)

as the mean height of the higher-order undular bore. The new mean levels at the front and rear
of the bore are then

β = A + αc5A
2, as m → 0,

β = B + αc5B
2, as m → 1.

(8)

Hence the transformation has changed the mean levels at the front and rear of the undular
bore. To change the mean levels at the two ends of the bore back to the original values we
rescale the boundary levels by

A = A∗ − αc5A
∗2, B = B∗ − αc5B

∗2, (9)

which gives the mean height of the undular bore as

β = 2B − A + (A − B)(2f (m) + m) +
α

3
c5(A − B)2[2 − 5m + 3m2

+ (4m − 2)f ] + α
4

3
c7(A − B)2[3(1 − f )2 − 2(1 − f )(1 + m) + m], (10)

where we have dropped the stars. Similar use of the transformation and the scaling (9) allows
expressions for the higher-order amplitude and peak and trough heights of the bore to be found.

Let us now consider the effect of the transformation (4) on the space and time variables
ξ and τ . We find that
x

t
= λ − αλ1 +

α

3
c4λ

2 − αc7D − αc7[2B − A + (A − B)m

+ 2(A − B)f (m)](λ − U), where

λ1 = 2A2 + 4B + 2(A2 − B2)m − 2(A2 − B2)
m(1 − m)

f − (1 − m)
,

D = −(A − B)2m2 + 2A(A − B)m − A2 + 4AB,

(11)

where the characteristic and phase speeds, λ and U, from the KdV bore (6), have been used.
Also the scalings (9) have been applied. Again, the transformation can be applied in a similar
manner to obtain the higher-order phase velocity and wavenumber.

Summarizing, the higher-order KdV undular bore solution is

β = 2B − A + (A − B)(2f (m) + m) +
α

3
c5(A − B)2[2 − 5m + 3m2 + (4m − 2)f ]

+ α
4

3
c7(A − B)2[3(1 − f )2 − 2(1 − f )(1 + m) + m],

a = (A − B)m + α(c5m + 2c6(m
2 − 2m))(A − B)2,

p = A + (A − B)m + αc5[(A − B)2m2 + 2A(A − B)m

− (A2 − B2)m] − αc6(A − B)24m,

q = A − (A − B)m + αc5[(A − B)2m2 − 2A(A − B)m

+ (A2 − B2)m] + αc6(A − B)24m(1 − m),
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Figure 1. The elevation η versus x at t = 25 for A = 1 and B = 0. The ci are given by (2) and
α = 0.25. Shown are the analytical higher-order KdV bore (dashed lines) and analytical–numerical
(solid lines) solution of (1). The analytical solution consists of the wave peak and trough envelopes
and the mean height.

U = C − αc7D + α
c4

3
C2 − αc5[6B2 + 2(A2 − B2)(1 + m)]

k = πK−1(A − B)
1
2

[
1 + αc7D − α

c4

3
C − 1

2
αc5(A + B)

]
,

C = 2A + 4B + 2(A − B)m. (12)

In the limit m → 1 we have a = 2(A − B) + α2(c5 − 2c6)(A − B)2 as the amplitude of the
lead soliton in the higher-order bore. Also, taking the characteristic (11) in the limits m → 0
and m → 1 gives the extent of the bore as

12B − 6A + αA2(12c4 + 6c5 − c7) + αAB

(
4c7 − 144

3
c4

)

+ αB2

(
144

3
c4 − 12c5

)
<

x

t
< 2B + 4A + αA2

(
16

3
c4 − 4c5

)

+ αAB

(
16

3
c4 + 4c7

)
+ αB2

(
4

3
c4 − 2c5 − c7

)
. (13)

The leading edge of the bore is determined by the velocity of the lead soliton, while the trailing
edge is determined by the group velocity of the linear radiation. The width of the bore at unit
time is

10(A − B) + αA2

(
c7 − 20

3
c4 − 10c5

)
+ α

160

3
c4AB − αB2

(
140

3
c4 − 10c5 + c7

)
, (14)

and the condition for the bore to exist remains A > B.

3. Results and discussion

Here the approximate analytical solution for the higher-order undular bore will be compared
with hybrid analytical–numerical solutions of the higher-order KdV equation (1). The
numerical solutions were found using a hybrid Runge–Kutta finite-difference scheme; see
Marchant and Smyth [12]. Figure 1 shows the elevation η versus x at t = 25 for A = 1
and B = 0. The other parameters are α = 0.25 and the ci all given by (2). Hence this
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Figure 2. The elevation η versus x at t = 25 for A = 1 and B = 0. The other parameters are
given by (16). Shown are the analytical higher-order KdV bore (dashed lines) and numerical (solid
lines) solutions of (1). The analytical solution consists of the wave peak and trough envelopes and
the mean height.

example describes the evolution of a higher-order bore for surface waves on shallow water.
The comparison between the analytical and the numerical–analytical solution is excellent.
The analytical solution consists of an undular bore which lies in the region −85.4 < x < 94.2
and takes the solution from a mean level of η = 1 at x = −85.4 to η = 0 at x = 94.2.
The analytical prediction, from (12), for the lead soliton amplitude is 2.08, compared with
the numerical amplitude of 2.02. This is some 4% higher than the lead soliton in a KdV
undular bore, which has an amplitude of 2. Moreover, a KdV bore propagates between
−150 < x < 100, so the lead soliton travels 6% slower in the higher-order bore and the width
of the higher-order bore is 28% less.

The calculation of numerical solutions for the higher-order KdV equation is limited to
small values of α due to numerical instabilities. It is found that the higher-order terms η2ηx and
ηη3x do not affect the stability of the numerical scheme due to their qualitative similarity to the
nonlinear and dispersive terms (ηηx and η3x , respectively) of the KdV equation. However, the
inclusion of the higher-order terms ηxηxx and η5x leads to severe limitations on the numerical
stability. To overcome this numerical instability the hybrid technique

uτ + 6uuξ + u3ξ + α(c1 − 12c4)u
2uξ + α(c3 − 8c4)uu3ξ = 0,

η = u +
α

12
(c2 − 18c4)uxx, τ = t + α

c4

3
x,

(15)

is used. The first of (15) is solved numerically and then the second of (15) is used to transform
the numerical solution. This gives a hybrid numerical–analytical solution of (1). This hybrid
solution only differs from a direct solution of (1) at O(α2), which is consistent with the
magnitude of the neglected terms in the derivation of (1). The transformation in (15) is local,
does not change the mean level and is straightforward to apply to any numerical solution.
Figure 2 shows the elevation η versus x at t = 25 for A = 1 and B = 0. The other parameters
are chosen as

αc1 = −0.191, αc2 = 1.39, αc3 = 0.186, αc4 = 0.0573. (16)

Figure 2 shows a rescaled version of undular bore evolution for internal waves for the example
shown in figure 8 of Lamb and Yan [10]. They showed the bore at time t = 5.7. Here we
show its evolution at a later time, t = 25. An excellent comparison between the analytical
and numerical solutions is obtained. The analytical solution consists of an undular bore which



Letter to the Editor L569

lies in the region −97.2 < x < 97.5 and takes the solution from a mean level of η = 1 at
x = −97.2 to η = 0 at x = 97.5. The analytical lead soliton amplitude is 1.79, compared with
the numerical amplitude 1.76. This is some 11% lower than the KdV lead soliton amplitude.
Moreover, a KdV bore propagates between −150 < x < 100, so the lead soliton travels 3%
slower in the higher-order bore, with the width of the higher-order bore 22% less.

Figure 8 of Lamb and Yan [10] compared numerical results for internal wave undular
bore evolution for the KdV and higher-order KdV equations and also for the full governing
equations, which comprise the internal water wave equations for incompressible, inviscid flow.
They found that there was little difference between numerical solutions of (1) and the internal
water wave equations. Equation (1) was found to give accurate predictions for the lead soliton
amplitude (within 2%) and the width of the bore. They also found that the KdV equation was
not very accurate, as it substantially over predicts the lead soliton amplitude and bore width,
as given by the internal water wave equations (see discussion above).

In summary, the analytical higher-order bore solution (12) is found to accurately describe
undular bore evolution as given by the higher-order KdV equation. While it was directly
shown that it compares well with numerical solutions of (1), Lamb and Yan [10] showed that
the difference between numerical predictions of (1) and of the internal water wave equations
is small for a realistic example of undular bore evolution for internal waves.

4. Conclusion

An analytical solution (12) for a higher-order KdV bore was developed using an asymptotic
transformation. It was found that the comparison between analytical and numerical solutions
is excellent. Moreover, analytical expressions were found for key quantities in the higher-
order bore, such as the amplitude and speed of the lead soliton and the width of the bore. The
higher-order KdV bore solution may be useful in understanding experimental and numerical
results from important applications in oceanography and meteorology. Also, a practical and
simple technique to obtain hybrid solutions of the higher-order KdV equation was presented.
These solutions are very difficult to obtain directly, due to numerical instability.
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